研究業績

Original Articles

  1. P. C. Dromel, D. Singh, E. Andres, M. Likes, M. Kurisawa, A. Alexander-Katz, M. Spector, M. Young, A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy, NPJ Regen. Med. 6, 85 (2021). 
  2. D. Du, Z. Liu, W. Niu, D. Weng, T. C. Lim, M. Kurisawa, M. Spector, An injectable multifunctional dual-phase bead-reinforced gelatin matrix permissive of mesenchymal stem cell infiltration for musculoskeletal soft tissue repair, Adv. Healthc. Mater. 2100626 (2021).
  3. F. Lee, K. H. Bae, S. Ng, A. Yamashita, M. Kurisawa, Hyaluronic acid–green tea catechin conjugates as a potential therapeutic agent for rheumatoid arthritis, RSC Advances 11, 14285-14294 (2021).
  4. W. Niu, T. C. Lim, A. Alshihri, R. Rajappa, L. S. Wang, M. Kurisawa, M. Spector, Platelet-derived growth factor stimulated migration of bone marrow mesenchymal stem cells into an injectable gelatin-hydroxyphenyl propionic acid matrix, Biomedicines 9, 203 (2021).
  5. A. Alshihri, W. Niu, P. Kaemmerer, M. Al-Askar, A. Yamashita, M. Kurisawa, M. Spector, The effects of shock wave stimulation of mesenchymal stem cells on proliferation, migration, and differentiation in an injectable gelatin matrix for osteogenic regeneration shockwave effect on mesenchymal stem cells in hydrogel, J. Tissue Eng. Regen. Med. 11, 1630-1640 (2020).
  6. P. C. Dromela, D. Singh, A. Alexander-Katza, M. Kurisawa, M. Spector, M. Young, Injectable gelatin hydroxyphenyl-propionic acid hydrogel protects human retinal progenitor cells (hRPCs) from shear stress exerted during small-bore needle injection, Appl. Mater. Today 19, 100602 (2020).
  7. K. Liang, K. H. Bae, A. Nambu, B. Dutta, J. E. Chung, M. Osato, M. Kurisawa*, A two-pronged anti-leukemic agent based on hyaluronic acid-green tea catechin conjugate for inducing targeted cell death and terminal differentiation, Biomater. Sci, 8, 497-505 (2020).  
  8. T. C. Lim, E. Mandeville, D. Weng, L. S. Wang, M. Kurisawa, K. Leite-Morris, M. H. Selim, E. H. Lo, M. Spector, Hydrogel-based therapy for brain repair after intracerebral hemorrhage, Transl. Stroke Res. 11, 412-417 (2020).  
  9. S. J. Chan, W. Niu, K. Hayakawa, G. Hamanaka, X. Wang, P. S. Cheah, S. Guo, Z. Yu, K. Arai, M. H. Selim, M. Kurisawa, M. Spector, E. H. Lo, Promoting neuro-supportive properties of astrocytes with epidermal growth factor hydrogels, Stem Cells Transl. Med. 8, 1242-1248 (2019).   
  10. S. Ng, W. J. Tan, M. M. X. Pek, M. H. Tan, M. Kurisawa, Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture, Biomaterials 219, 119400 (2019).   
  11. N. Yongvongsoontorn, J. E. Chung, S. J. Gao, K. H. Bae, M. H. Tan, J. Y. Ying, M. Kurisawa, Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery, ACS Nano 13, 7591-7602 (2019).    
  12. J. Park, P. Baranov, A. Aydin, H. Abdelgawad, D. Singh, W. Niu, M. Kurisawa, M. Spector, M. J. Young, In situ cross-linking hydrogel as a vehicle for retinal progenitor cell transplantation, Cell Transplant. 28, 596-606 (2019). 
  13. S. Tan, A. Yamashita, S. J. Gao, M. Kurisawa, Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells, Acta Biomater. 94, 320-329 (2019).
  14. L. Li, K. H. Bae, S. Ng, A. Yamashita, M. Kurisawa, Peroxidase-immobilized porous silica particles for in situ formation of peroxidase-free hydrogels with attenuated immune responses, Acta Biomater. 81,103-114 (2018).
  15. K. Liang, J. E. Chung*, S. J. Gao, N. Yongvongsoontorn, M. Kurisawa, Highly augmented drug loading and stability of micellar nanocomplexes comprised of doxorubicin and poly(ethylene glycol)-green tea catechin conjugate for cancer therapy, Adv. Mater. 30, 1706963 (2018).
  16. K. H. Bae, S. Tan, A. Yamashita, W. X. Ang, S. J. Gao, S. Wang, J. E. Chung, M. Kurisawa, Hyaluronic acid-green tea catechin micellar nanocomplex: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity, Biomaterials 148, 41-53 (2017).
  17. C. Liu, K. H. Bae, A. Yamashita, J. E. Chung, M. Kurisawa, Thiol-mediated synthesis of hyaluronic acid-epigallocatechin-3-O-gallate conjugates for the formation of injectable hydrogels with free radical scavenging property and degradation resistance, Biomacromolecules 18, 3143-3155 (2017).
  18. K. Liang, K. H. Bae, F. Lee, K. Xu, J. E. Chung, S. J. Gao, M. Kurisawa, Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery, J. Control. Release 226, 205-216 (2016).
  19. K. Liang, S. Ng, F. Lee, J. Lim, J. E. Chung, S. S. Lee, M. Kurisawa, Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels, Acta Biomater. 33, 142-152 (2016).
  20. K. Ueda, J. Akiba, S. Ogasawara, K. Todoroki, M. Nakayama, A. Sumi, H. Kusano, S. Sanada, S. Suekane, K. Xu, K. H. Bae, M. Kurisawa, T. Igawa, H. Yano, Growth inhibitory effect of an injectable hyaluronic acid-tyramine hydrogels incorporating human natural interferon-α and sorafenib on renal cell carcinoma cells, Acta Biomater. 29, 103-111(2016). 
  21. F. Lee, J. E. Chung, K. Xu, M. Kurisawa, Injectable degradation-resistant hyaluronic acid hydrogels crosslinked via the oxidative coupling of green tea catechin, ACS Macro Lett. 4, 957-960 (2015). 
  22. K. Xu, F. Lee, S. Gao, M.-H. Tan, M. Kurisawa, Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab, J. Control. Release 216, 47-55 (2015).
  23. K. Xu, K. Narayanan, F. Lee, K. H. Bae, S. Gao, M. Kurisawa, Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D, Acta Biomater. 24, 159-171 (2015).
  24. K. H. Bae, F. Lee, K. Xu, C. T. Keng, S. Y. Tan, Y. J. Tan, Q. Chen, M. Kurisawa, Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs, Biomaterials 63, 146-157 (2015).
  25. F. Lee, J. Lim, M. R. Reithofer, S. S. Lee, J. E. Chung, C. A. E. Hauser, M. Kurisawa, Synthesis and bioactivity of a conjugate composed of green tea catechin and hyaluronic acid, Polym. Chem. 6, 4462-4472 (2015).
  26. C. D. Ren, M. Kurisawa, J. E. Chung, J. Y. Ying, Liposomal delivery of horseradish peroxidase for thermally triggered injectable hyaluronic acid-tyramine hydrogel scaffold, J. Mater. Chem. B 3, 4663-4670 (2015).
  27. C. D. Ren, S, Gao, M. Kurisawa, J. Y. Ying, Cartilage synthesis in hyaluronic acid‒tyramine constructs, J. Mater. Chem. B 3, 1942-1956 (2015). 
  28. J. E. Chung*, S. Tan, S. J. Gao, N. Yongvongsoontorn, S. H. Kim, J. H. Lee, H. S. Choi, H. Yano, L. Zhuo, M. Kurisawa, J. Y. Ying, Self-assembled nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy, Nature Nanotechnol. 9, 907-912 (2014).
  29. L. S. Wang, F. Lee, J. Lim, C. Du, A. C. A. Wan, S. S. Lee, M. Kurisawa, Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature, Acta Biomater. 10, 2539-2550 (2014). 
  30. L. S. Wang, C. Du, W. S. Toh, A. C. A Wan, S. J. Gao, M. Kurisawa, Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties, Biomaterials 35, 2207–2217 (2014). (IF = 8.557, Times cited = 141).
  31. W. Y. Seow, K. Liang, M. Kurisawa, C. A. E. Hauser, Oxidation as a facile strategy to reduce the surface charge and toxicity of polyethyleneimine gene carriers, Biomacromolecules 14, 2340-2346 (2013).
  32. K. Xu, F. Lee, S. J. Gao, J. E. Chung, H. Yano, M. Kurisawa, Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-a2a for liver cancer therapy, J. Control. Release 166, 203–210 (2013).
  33. T. C. Lim, S. Rokkappanavar, W. S. Toh, L. S. Wang, M. Kurisawa, M. Spector, Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1a release and compatible structural support, FASEB J. 27, 1023-1033 (2013).
  34. F. Lee, M. Kurisawa*, Formation and stability of interpenetrating polymer network hydrogels consist of fibrin and hyaluronic acid for tissue engineering, Acta Biomater. 9, 5143-5152 (2013).
  35. W. S. Toh, T. C. Lim, M. Kurisawa, M. Spector, Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment, Biomaterials 33, 3835–3845 (2012).
  36. L. S. Wang, C. Du, J. E. Chung, M. Kurisawa*, Enzymatically crosslinked gelatin-phenol hydrogels with broader stiffness range for osteogenic differentiation of human mesenchymal stem cells, Acta Biomater. 8, 1826–1837 (2012). 
  37. T. C. Lim, W. S. Toh, L. S. Wang, M. Kurisawa, M. Spector, The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells, Biomaterials 33, 3446–3455 (2012).
  38. L. S. Wang, J. E. Chung, M. Kurisawa, Controlling fibroblast proliferation with dimensionality-specific response by stiffness of injectable gelatin hydrogels, J. Biomater. Sci. Polym. Edn. 23, 1793-1806 (2012). 
  39. L. S. Wang, J. Boulaire, P. P. Y. Chan, J. E. Chung, M. Kurisawa, The role of stiffness of gelatin- hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell, Biomaterials 31, 8608–8616 (2010). 
  40. L. S. Wang, J. E. Chung, P. P. Y. Chan, M. Kurisawa, Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture, Biomaterials 31, 1148–1157 (2010).
  41. M. Hu, R. Deng, K. M. Schumacher, M. Kurisawa, H. Ye, K. Purnamawati, J. Y. Ying, Hydrodynamic spinning of hydrogel fibers, Biomaterials 31, 863-869 (2010). 
  42. M. Hu, M. Kurisawa, R. Deng, C. M. Teo, A. Schumacher, Y. X. Thong, L. S. Wang, K. M. Schumacher, J. Y. Ying, Cell immobilization in gelatin-hydroxyphenylpropionic acid hydrogel fibers, Biomaterials 30, 3523–3531 (2009). 
  43. F. Lee, J. E. Chung, M. Kurisawa, An injectable hyaluronic acid-tyramine hydrogel system for protein delivery, J. Control. Release 134, 186–193 (2009). 
  44. Y. S. Pek, M. Kurisawa, S. J. Gao, J. E. Chung, J. Y. Ying, The development of a nanocrystalline apatite reinforced crosslinked hyaluronic acid-tyramine composite as an injectable bone cement, Biomaterials 30, 822-828 (2009). 
  45. F. Lee, J. E. Chung, M. Kurisawa, An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate, Soft Matter 4, 880-887 (2008). 
  46. P. Chan, M. Kurisawa, J. E. Chung, Y. Y. Yang, Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral career for tumor-targeted gene delivery, Biomaterials 28, 540-549 (2007).
  47. M. Kurisawa, J. E. Chung, Y. Y. Yang, S. J. Gao, H. Uyama, Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering, Chem. Commun. 4312-4314 (2005). 
  48. N. Ihara, M. Kurisawa, J. E. Chung, H. Uyama, S. Kobayashi, Enzymatic synthesis of a catechin conjugate of polyhedral oligomeric silsesquioxane and evaluation of its antioxidant activity, Appl. Microbiol. Biotechnol. 66, 430-433 (2005). 
  49. N. Ihara, S. Schmitz, M. Kurisawa, J. E. Chung, H. Uyama, S. Kobayashi, Amplification of inhibitory activity against disease-related enzymes by conjugation of catechin on poly(e-lysine), Biomacromolecules 5, 1633-1636 (2004). 
  50. H. Choi, T. Ooya, S. Sasaki, N. Yui, M. Kurisawa, H. Uyama, S. Kobayashi, Spontaneous change of physical state from hydrogels to crystalline precipitates during polypseudorotaxane formation, ChemPhysChem 5, 1431-1434 (2004).
  51. H. Choi, T. Ooya, S. C. Lee, S. Sasaki, M. Kurisawa, H. Uyama, N. Yui, pH-Dependence of polypseudorotaxane formation between cationic linear polyethyleneimine and cyclodextrins, Macromolecules 37, 6705-6710 (2004). 
  52. T. Ooya, A. Yamashita, M. Kurisawa, Y. Sugaya, A. Maruyama, N. Yui, Effects of polyrotaxane structure on polyion complexation with DNA, Sci. Tech. Adv. Mater. 5, 363-369 (2004). 
  53. Y. J. Kim, J. E. Chung, M. Kurisawa, H. Uyama, S. Kobayashi, Superoxide anion scavenging and xanthine oxidase inhibition of (+)-aldehyde polycondensates. Amplification of antioxidant property of catechin by polycondensation with aldehyde, Biomacromolecules 5, 547-552 (2004). 
  54. Y. J. Kim, J. E. Chung, M. Kurisawa, H. Uyama, S. Kobayashi, New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, Biomacromolecules 5, 474-479 (2004). 
  55. M. Kurisawa, J. E. Chung, H. Uyama, S. Kobayashi, Oxidative coupling of epigallocatechin gallate amplifies antioxidant activity and inhibits xanthine oxidase activity, Chem. Commun. 294-295 (2004). 
  56. J. E. Chung, M. Kurisawa, Y. J. Kim, H. Uyama, S. Kobayashi, Amplification of antioxidant activity of catechin by polycondensation with acetaldehyde, Biomacromolecules 5, 113-118 (2004). 
  57. J. E. Chung, M. Kurisawa, H. Uyama, S. Kobayashi, Enzymatic synthesis and antioxidant property of gelatin-catechin conjugates, Biotechnol. Lett. 25, 1993-1997 (2003). 
  58. N. Ihara, Y. Tachibana, J. E. Chung, M. Kurisawa, H. Uyama, S. Kobayashi, Antioxidant polymer particles: Enzymatic immobilization of catechin on polymer particles, Chem. Lett. 32, 816-817 (2003). 
  59. Y. J. Kim, J. E. Chung, M. Kurisawa, H. Uyama, S. Kobayashi, Regioselective synthesis and structures of (+)-catechin-aldehyde polycondensates, Macromol. Chem. Phys. 204, 1863-1868 (2003). 
  60. M. Kurisawa, J. E. Chung, H. Uyama, S. Kobayashi, Laccase-catalysed synthesis and antioxidant property of poly(catechin), Macromol. Biosci. 3, 758-764 (2003). 
  61. M. Kurisawa, J. E. Chung, H. Uyama, S. Kobayashi, Enzymatic synthesis and antioxidant properties of poly(rutin), Biomacromolecules 4, 1394-1399 (2003). 
  62. Y. Tachibana, M. Kurisawa, H. Uyama, S. Kobayashi, Thermo- and pH-responsive biodegradable poly(a-N-substituted g-glutamine)s, Biomacromolecules 4, 1132-1134 (2003). 
  63. J. E. Chung, M. Kurisawa, Y. Tachibana, H. Uyama, S. Kobayashi, Enzymatic synthesis and antioxidant property of poly(allylamine)-catechin conjugate, Chem. Lett. 32, 620-621 (2003). 
  64. M. Kurisawa, J. E. Chung, Y. J. Kim, H. Uyama, S. Kobayashi, Amplification of antioxidant activity and xanthine oxidase inhibition of catechin by enzymatic polymerization, Biomacromolecules 4, 469-471 (2003). 
  65. Y. Tachibana, M. Kurisawa, H. Uyama, T. Kakuchi, S. Kobayashi, Thermoresponsive hydrogels based on biodegradable poly(amino acid)s, Chem. Lett. 32, 374-375 (2003). 
  66. Y. Tachibana, M. Kurisawa, H. Uyama, T. Kakuchi, S. Kobayashi, Biodegradable thermoresponsive poly(amino acid)s, Chem. Commun. 106-107 (2003). 
  67. M. Yokoyama, M. Kurisawa, T. Okano, Influential factors on temperature-controlled gene expression using thermo-responsive polymeric gene carriers, J. Artificial Organs 4, 138-145 (2001). 
  68. M. Kurisawa, M. Yokoyama, T. Okano, Gene expression control by temperature with thermo-responsive polymeric gene carriers, J. Control. Release 69, 127-137 (2000). 
  69. M. Kurisawa, M. Yokoyama, T. Okano, Transfection efficiency increases by incorporating hydrophobic monomer units into polymeric gene carriers, J. Control. Release 68, 1-8 (2000). 
  70. M. Kurisawa, N. Yui, Modulated degradation of dextran hydrogels grafted with poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) in response to temperature, Macromol. Chem. Phys. 199, 2613-2618 (1998).
  71. M. Kurisawa, Y. Matsuo, N. Yui, Modulated degradation of hydrogels with thermo-responsive network in relation to their swelling behavior, Macromol. Chem. Phys. 199, 705-709 (1998). 
  72. M. Kurisawa, N. Yui, Dual-stimuli-responsive drug release from interpenetrating polymer network-structured hydrogels of gelatin and dextran, J. Control. Release 54, 191-200 (1998). 
  73. M. Kurisawa, N. Yui, Gelatin/dextran intelligent hydrogels for drug delivery: dual-stimuli-responsive degradation in relation to miscibility in interpenetrating polymer networks, Macromol. Chem. Phys. 199, 1547-1554 (1998). 
  74. M. Kurisawa, M. Terano, N. Yui, Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly (ethylene glycol) and dextran with an interpenetrating polymer network, J. Biomater. Sci. Polym. Edn. 8691-708 (1997). 
  75. H. Fujita, T. Ooya, M. Kurisawa, H. Mori, M. Terano, N. Yui, Thermally switchable polyrotaxane as a model of stimuli-responsive supramolecules for nano-scale devices, Macromol. Rapid Commun. 17, 509-515 (1996). 
  76. N. Yamamoto, M. Kurisawa, N. Yui, Double-stimuli-responsive degradable hydrogels: interpenetrating polymer networks consisting of gelatin and dextran with different phase separation, Macromol. Rapid Commun. 17, 313-318 (1996). 
  77. N. Yui, M. Kurisawa, Design of double diagnostic function using biodegradable with interpenetrating polymer networks, Jpn. J. Artif. Organs 25, 175-179 (1996). 
  78. M. Kurisawa, M. Terano, N. Yui, Doublestimuli-responsive degradable hydrogels for drug delivery: Interpenetrating polymer networks composed of oligopeptide-terminated poly (ethylene glycol) and dextran, Macromol. Rapid Commun. 16, 663-666 (1995).